An Inter-Comparison of Techniques for Determining Velocities of Maritime Arctic Glaciers, Svalbard, Using Radarsat-2 Wide Fine Mode Data
نویسندگان
چکیده
Glacier dynamics play an important role in the mass balance of many glaciers, ice caps and ice sheets. In this study we exploit Radarsat-2 (RS-2) Wide Fine (WF) data to determine the surface speed of Svalbard glaciers in the winters of 2012/2013 and 2013/2014 using Synthetic Aperture RADAR (SAR) offset and speckle tracking. The RS-2 WF mode combines the advantages of the large spatial coverage of the Wide mode (150 × 150 km) and the high pixel resolution (9 m) of the Fine mode and thus has a major potential for glacier velocity monitoring from space through offset and speckle tracking. Faster flowing glaciers (1.95 m·d−1–2.55 m·d−1) that are studied in detail are Nathorstbreen, Kronebreen, Kongsbreen and Monacobreen. Using our Radarsat-2 WF dataset, we compare the performance of two SAR tracking algorithms, namely the GAMMA Remote Sensing Software and a custom written MATLAB script (GRAY method) that has primarily been used in the Canadian Arctic. Both algorithms provide comparable results, especially for the faster flowing glaciers and the termini of slower tidewater glaciers. A comparison of the WF data to RS-2 Ultrafine and Wide mode data reveals the superiority of RS-2 WF data over the Wide mode data.
منابع مشابه
Positive mass balance during the late 20th century on Austfonna, Svalbard, revealed using satellite radar interferometry
Determining whether increasing temperature or precipitation will dominate the cryospheric response to climate change is key to forecasting future sea-level rise. The volume of ice contained in the ice caps and glaciers of the Arctic archipelago of Svalbard is small compared with that of the Greenland or Antarctic ice sheets, but is likely to be affected much more rapidly in the short term by cl...
متن کاملGlacier Surface Velocity Retrieval Using D-InSAR and Offset Tracking Techniques Applied to Ascending and Descending Passes of Sentinel-1 Data for Southern Ellesmere Ice Caps, Canadian Arctic
The Terrain Observation by Progressive Scans (TOPS) acquisition mode of the Sentinel-1 mission provides a wide coverage per acquisition with resolutions of 5 m in range and 20 m in azimuth, which makes this acquisition mode attractive for glacier velocity monitoring. Here, we retrieve surface velocities from the southern Ellesmere Island ice caps (Canadian Arctic) using both offset tracking and...
متن کاملGlaciological conditions in seven contrasting regions estimated with the degree-day model
We apply the degree-day model to seven glacial regions that offer contrasting conditions and are well documented in the World Glacier Inventory. The regions are: Axel Heiberg Island in Arctic Canada; Svalbard; northern Scandinavia; southern Norway; the Alps; the Caucasus; and New Zealand. We estimate the average equilibrium-line altitude (ELA) for each half-degree latitude/longitude grid square...
متن کاملRedefinition of Aureobasidium pullulans and its varieties
Using media with low water activity, a large numbers of aureobasidium-like black yeasts were isolated from glacial and subglacial ice of three polythermal glaciers from the coastal Arctic environment of Kongsfjorden (Svalbard, Spitsbergen), as well as from adjacent sea water, sea ice and glacial meltwaters. To characterise the genetic variability of Aureobasidium pullulans strains originating f...
متن کاملMass balance of three Svalbard glaciers reconstructed back to 1948
A simple model using upper-air meteorological variables in the NCEP-NCAR Reanalysis database is used to model seasonal components of mass balance of three glaciers in Svalbard. The model was originally developed for glaciers in North America, and has been applied to glaciers in Norway, Sweden and Iceland. Over the period for which mass balance data are available for the three Svalbard glaciers,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016